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The Smoothed Particle Hydrodynamics (SPH)

A General features of the SPH

A Smoothed and discrete operators
A Standard SPH scheme

A Weaklycompressibility assumption
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General features aof the: SPH

The origin of the method

1977 Gingold& Monaghan / Lucy : born of SPH
application field: astrophysics

y n Qa mainly applied in astrophysics
Gadk NI F2NXIFOA2y T aStF AN GAGF GAY3
then modelling of structures

dn Qa astrophysics, structures ;
1994: freesurface SPH (Monaghan)

H n n n Qstrophysics, structureduid dynamicX @
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The SPH isparticle method

The fluid domain@ hereinafter)

IS discretized into a finite number
of particles that represent
elementary volumes of fluid
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General features aof the: SPH

The SPH isfarticle method

The fluid domain@ hereinafter)

IS discretized into a finite number
of particles that represent
elementary volumes of fluid

No topological connections
=>the SPH is Beshlesamethod

Particles transport the values of the physical
guantities (e.g. pressure and velocity),
moving with the fluid velocity

=>the SPH is hagrangianmethod !



General features Qi the' ot

Meshless:

A to solve problems where mesdtased solvers meet difficulties
(e.g. venjarge deformationsof the fluid domain)
A to avoid costly mesh generating/handling

Lagrangian

A to naturally and accurately followterfaces evolution
(complex free surfaces, mulluid/phase interfaces)
A to solve fast dynamics flows (no convection term)



Why smoothing?

A the Lagrangiamature of the SPH induce®n-uniform spatial distributions
of particles during the flow evolution

A the absence of topological connections between particles (meshless metho
makes theevaluation ofstandard differential operators very complex

The smoothing procedure allows us to model the interactions between
neighbourparticlesin a simpleand consistentway and to approximatethe
usualdifferential operatorsin areliablemanner




Smoothing- CONTINUUM

W

Let us consider a weight functiod /
(kernel function) defined as follows:

A radial and positive /
/
/
) ,
A with a compact suppork /
(i.e. it is null outsidé) / e 7 K
// R”

A C{(R) at least L



Smoothing- CONTINUUM

Let us consider a weight functiod , /
(kernel function) defined as follows:

A radial and positive /
/
/
A with a compact suppork //
(i.e. it is null outsidé&) //
// R”
A C{(R) at least L

Thekernelfunction hasgenerallya bump-like shape
A Gaussiartype
A Polinomialtype (e.g.Wendlandkernelg

A Splinekernels(e.g.Cubidquintic splineg X



Smoothing- CONTINUUM

Let us consider a weight function
(kernel function) defined as follows:

A radial and positive /
/
/
A with a compact suppork //
(i.e. it is null outsidé&) //
// RH
A C{(R) at least L

Thekernelfunctionis generallyexpressed Wi(x:h)
asafunctionof areferencelengthh,
called smoothing length,
whichis proportionalto the radiusR

of the kerneldomainK K



Smoothing- CONTINUUM

The kernel function is normalizet one, that is:

fW(x;h)dV* = 1 h >0
Q

Consequently, the kernel functioN preserves
Its «mass» inside the suppoK for every choice oh K
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Smoothing- CONTINUUM

The kernel function is normalizet one, that is:

fW(x;h)dV* =1 h > 0
Q

Consequently, the kernel functioN preserves
Its «mass» inside the suppoK for every choice oh K

Forh going to zerg the Kernel function shrinks to a poifpreserving its mags

W(x:h) Gaussian kernel in 2D wi=3h

—— h=1/3
h — 0 —— h=1/2
—— h=2/3
——— h=1

T ! !
1 2 3

W canerges weakly to a Dirac function!




Smoothing- CONTINUUM

The smoothing procedure is defined throughanvolution integrawith the
kernel functionW over the fluid domail

In particular, for a generic scalar functihrwe define:
(Hx) = fx)W(x —x",h)dV”
Qnp

the support K is centred at the pointx and K
the integration is done on the variabk

As a conseguence of the properties\f we have
X Wx-x":h) = Wx"=x:h)

x VWx—-x"h) = -V Wkx-x":1h) where V" denotes
differentiation with respect toc*



Smoothing- CONTINUUM

The simplest case is obtained fed

I = W(x—-x":h)dV”
(x) o (x —x":h) X

CKAA FdzyOlAzy G 1Sa Aydaz | O02Dzy
IS inside the kernel domaiK



Smoothing- CONTINUUM

The simplest case is obtained fed

['(x) = Wix—x":h)ydV”
QnD

CKA& FdzyOuAazy (F1Sa Ayd?z
IS inside the kernel domaiK

I OO0 2MDzy U

Since the kernel is normalized, we have:

['(x) =1 it QcD

All the «kmass» is inside the fluid domal




Smoothing- CONTINUUM

The simplest case is obtained fed

['(x) = Wix—x":h)ydV”
QnD

CKAA FdzyOlAzy G 1Sa Aydaz | O02Dzy
IS inside the kernel domaiK

Since the kernel is normalized, we have:

['(x) =1 it QcD

['x) <1 it QND° # 0

Some «mass» is outside the fluid domain




Smoothing- CONTINUUM

Now, let us consider again the convolution of the kernel funcéén
with a generic scalar functidn

(Nx) = j fx)Wx —x* h)ydV”
QnD



Smoothing- CONTINUUM

Now, let us consider again the convolution of the kernel funcéén
with a generic scalar functidn

()x) = j P W — x°. I dV-
QnD

Expandingf(x*) in the neighbourhood ofx and using the radial symmetry
of the kernel function, we find

(fHx) = fx) + O(K*) if QcD

This is because the kernel function
converges weakly to a Dirac functign




Smoothing- CONTINUUM

Now, let us consider again the convolution of the kernel funcéén
with a generic scalar functidn

()x) = j P W — x°. I dV-
QnD

Expandingf(x*) in the neighbourhood ofx and using the radial symmetry
of the kernel function, we find

(Hx) = flx) + O h? if QcD

()X —@mm@ if QnD" %0

The lack of mass insideéworsens
the convergence of the smoothed function!




Smoothing- CONTINUUM

2

1 2
1]

, Smoothing of a linear function

(HNx) = f fxH)W(x —x*,h)dV”
QnD

influence of the boundary of the fluid domal®) where I'(x) < 1




Smoothing- CONTINUUM

Similarly, we define the smoothed gradient of the functibn

(VHx) = f ViF(x)W(x —x*, h)ydV* where V* denotes
QnD differentiation with respect toc*



Smoothing- CONTINUUM

Similarly, we define the smoothed gradient of the functibn

(VHx) = f ViF(x)W(x —x*, h)ydV* where V* denotes
QnD differentiation with respect to x*

:f @ (.r—x*,h)n*dS*—f @" x—x", h)ydv”
HQND) QnD

integrating by parts




Smoothing- CONTINUUM

Similarly, we define the smoothed gradient of the functibn

(VHx) = f ViF(x)W(x —x*, h)ydV* where V* denotes
QnD differentiation with respect to x*

— f fxHWx—-x"h)yn"dS" — f fxH)VW(x —x", h)dV”
A QND)

QnpD

= f fxXHYWx—-x"hn dS@f f(x*@(x—x*,h)dV*
HQND) QnD

VW(x-=x"h) = =VW(x-=x".h)

from the radial symmetry of the kernel functio

N




Smoothing- CONTINUUM

Similarly, we define the smoothed gradient of the functibn

(VHx) = f ViF(x)W(x —x*, h)ydV* where V* denotes
QnD differentiation with respect to x*

— f fxHWx—-x"h)yn"dS" — f fxH)VW(x —x", h)dV”
A QND)

QnpD

- f fxXHWx—-x"h)yn dS" + fxHVW(x —x". h)dV”
| Jo@nD) ’ QnD

|

boundary integral to be estimated




Smoothing- CONTINUUM

Kis inside the
fluid domain

j fxHYWx—-x"hn"dS" =0 if QcD
a(QnD)

since (by definition) = W a0 = 0

W )a(ﬂn D)



Smoothing- CONTINUUM

j fxHYWx—-x"hn"dS" =0 if QcD
a(QnD)

since (by definition) W, = W| =0
/// \\\
f fEOWx—x"in"ds” =L O(n™") | if QnD" %0
NQND) \\ /,

—

Some «mass» Is outsid
the fluid domain




Smoothing- CONTINUUM

Expandingf(x*) in the neighbourhood ox%, we find:

f fxH)W(x —x"h)yn"dS”
JQND)



Smoothing- CONTINUUM

Expandingf(x*) in the neighbourhood ox%, we find:

f fxHW(x—-x"h)n dS™ = f(x) Wx—-x"h)n dS*
HQND) aQND)



Smoothing- CONTINUUM

Expandingf(x*) in the neighbourhood ox%, we find:

f fxHW(x—-x"h)n dS™ = f(x) W(x—-x"h)yn"dS™ + O(h)
HQND)

QD)
— f(.r)f (x—x*,h)dV* + Oh)
@QnD



Smoothing- CONTINUUM

Expandingf(x*) in the neighbourhood ox%, we find:

f fxHW(x—-x"h)n dS™ = f(x) W(x—-x"h)yn"dS™ + O(h)
HQND) a(QND)

= f(x) VW(x —x*h)dV* + O(h) @(x) f @V(x—x*,h)dv* + O(h)
(QnD) Qn



Smoothing- CONTINUUM

Expandingf(x*) in the neighbourhood ox%, we find:

f fxHW(x—-x"h)n dS™ = f(x) W(x—-x"h)yn"dS™ + O(h)
#QND) a(QND)

= f(x) VW —x" h)ydV' + O(h) = —f(x) VW(x —x* ydV® + O(h)
(QQND) (£2ND)

= —f(x O(h)

VI(x) =0 it QcD



Smoothing- CONTINUUM

Then, using the previous estimate for the boundary integral, we find:

(Vix) = f VS (x)W(x —x*, h)dV”
QND

— f fxXHOWx—-x"h)yn dS" + f fxH)VW(x —x",h)dV”
aNQND)

QnD



Smoothing- CONTINUUM

Then, using the previous estimate for the boundary integral, we find:

(Vix) = f VS (x)W(x —x*, h)dV”
QND

— f fxXHOWx—-x"h)yn dS" + f fxH)VW(x —x",h)dV”
HQND) QnD

A
[ 1

= — f(x) VW(x —-x",h)dV* + O(h) + fxHVW(x —x", h)dV*
QnD QND




Smoothing- CONTINUUM

Then, using the previous estimate for the boundary integral, we find:

(Vix) = f VS (x)W(x —x*, h)dV”
QND

— f fxXHOWx—-x"h)yn dS" + f fxH)VW(x —x",h)dV”
HQND) QnD

= — f(x) VW(x —-x",h)dV* + O(h) + fxHVW(x —x", h)dV*
QnD QND

Collecting together all the contributions, we obtain the expression for the
smoothed gradient

(VI)x) = f [ f(x") = f(¥)] VW(x = x", iy dV* + O(h)
QnD




Smoothing- CONTINUUM

Summary

Kinside the fluid domaii K partially out of the fluid domai
[(x) =1 ['(x) <1

(Hx) = fx) + O(h?) (f)x) = Tx) f(x) + Oh)
VI(x) = 0 VI(x)= O(h™")

(VAx) = Vi) + O(n) (V@) = T@) Vi) + Oh)




Smoothing- CONTINUUM
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Smoothing- CONTINUUM

2

2
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Smoothed gradient
of a linear function
y-component

f

(VF)(x) = f [ £(x*) = f(x)] VW(x —x*, h)dV"*
QnpD




Smoothing- DISCRETE

The fluid domain is discretized in a finite number of particles that represent
elementary volumes of fluand transport the main physical quantities

Let us assume that the volumegl NB Yy 28y X

(these may be obtained through geometrical procedures basing
on particle distribution or during the numerical simulation)




SIMOOtNINGg- WISCRIE:

The fluid domain is discretized in a finite number of particles that represent
elementary volumes of fluand transport the main physical quantities

Let us assume that the volumegl NB Yy 28y X

(these may be obtained through geometrical procedures basing
on particle distribution or during the numerical simulation)

Then, we replace the integral ov&by summations over the neighbour particles

[(x) = [ Wx—x":h)dV” [; = WiV

jeNi

1-"V;J = W(x, - Xj, !’.’)

A; = | jsuch that [[x; — xj]| < R }




Smoothing- DISCRETE

Similarly, wedefine

() = | fa)Wx—x".hdV’ (i = fo WiV

QnD jEL/ﬁ'

where fi = f(x;)

@ = [ -] VW (= Y (fi= fi) Vil Vs
. jeA;

where V; represents
differentiation with respect to

Hereinafter thesymbol .4/ in the summations is understood




SIMOOtNINGg- WISCRIE:

What about the convergence of discrete operator towards
the continuoussmoothedoperators?

increasing the number of particle iIrkK ‘ decreasing k EK K

k Hs the mean particle distance

Ly Fye| OFrasxao

A the convergence strongly depends on the way in which the particles
are distributed (regular distributions are needed)

A even in the presence of regular particle distribution, the order of
convergence is generally between 1 and 2




Smoothing- DISCRETE

For the function, if x; € Q c D | (i.e. inside the fluid domain)

discrete smoothed(continuous) exact

(i > (xi) > f(x)
AXx

50 h — 0

h

+ REGULAR PARTIGLE
DISTRIBUTIONS!

For regular distributions, the convergence to the exact solution
Is attainedif BOTH the parameterk E kaKdh go to zerd
(see, for example, Quinlan et al. 2006)



Smoothing- DISCRETE

For example, if we check the convergence

f the SPH by d '
& = XN = fxl ore > ecreasiry
while k E ksKixed

(i.e.constant number of particleim KO X

k E k ¢onsf

k E Kk ¢onsf?2

k E k ¢onsf4

-~
/// Theoretical secondrder convergence for h

7~
7~
7~
~




Smoothing- DISCRETE

Forlx; e Q c D (i.e. inside the fluid domain)
for k E Kk K= Xfénd fof regmar distributions!

[ = ZW:',;‘V; ~ 1 (N = ijwf,jvj =~ I f(xi)
J J

VI = ) ViWi; V=0 V= ) (fi=fi) ViWi Vj = TV f(x)
J

J
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What is a «regular» particle distribution?

I O2y&daAradsSyd FyR dzyAldzsS RST)\y)\ A2y
Xodzi Ay GKS {tl FNIXQYS@g2N] oS YA
+ NRAIT; £ SV I VR

reqular: I, =~ 1

iregular:  1; s 1
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VI KFa | FdzZNOKSNJ AYLRZNIOFYGd LINELISNIe@

Sincel; is related to the particle concentration, the vector

y; = — VI, points towards the «voids» inside the fluid domain

’—_——- ’_——~

-
’__—————’

© 0 0 o .

100 0 00 0O

\
\

«regular» «irregular»
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This property has been used:

A to build algorithms that initialize the SPH simulations with a regular
particle distribution, disregarding the specific geometry
under consideration.

see, for example, thParticle Packing AlgorithriColagrossi et al., 2012)
A to define SPH schemes that dynamically evolve towards uniform
and reqgular particle distributions.

see, for example, thParticle Shifting Techniqu@ST)
(Nestor et al. 2009, Lind et al. 2012)

Some care has to be used close to the boundatries
(e.g. along free surfaces or solid bodies)




he standard-SPH

We are interested in th&PH in the fluid dynamics fiexd ®

Despite many fluids (like water) are modelled as incompressible, the SPH
In its basic form relies on the hypotheses thia¢ fluid is weaklycompressible

(this will be clarified later)

It may be derived from th&lavierStokes equations for compressible fluids:

Lagrangiamlerivatives
Voou " is the fluid density,

u is the fluid velocity

pf—Vp+ pis the pressure field

fis a body force

) u
‘% viscous component of the stress tenspr

State equation fobarotropicfluids




he standard-SPH

We are interested in th&PH in the fluid dynamics fiexd ®

Despite many fluids (like water) are modelled as incompressible, the SPH
In its basic form relies on the hypotheses thia¢ fluid is weaklycompressible
(this will be clarified later)

It may be derived from th&lavierStokes equations for compressible fluids:

(]}U ( dpi

+ _ _ V. he L] v AR

d1 P u 7 i (V- u);

1z . d i
L p— = pf - Vp+ VY Pt = pifi = V)i + (V- V),

dx :

FTE u p = F(p) u % = U; pi = F(pi)

\

the differential operators are substituted with their smoothed (and discrete) counterpat




he standard-SPH

S5AOSNESYOS 2F ((V-uy = Z(uj—ui)-v,-w
J

mmmm) | Wwe need to find out the volumes

Being d_agrangiammethod, it is common practise in the standard SPH to associe
amassm;  to each particle and to maintain it constant during the flow evoluti

ni;

dm,; Ve —
=0 P =
—> - and oy

It is also possible to define the volumes basing on geometrical consideration
(e.g. particle distribution® a LJI&RBvENga2003)



he standard-SPH

DSYSN}ftfexo

A the SPH simulation is initialized by imposing
a uniform particle distribution
(or, at least, as regular as possible!) _
=> the vol initiall if Vil . = Vy Vi
the volumes aranitially uniform t=to



e Standart- Sk

DSYSN} ffexo

i,

Pi

A the SPH simulation is initialized by imposing
a uniform particle distribution
(or, at least, as regular as possible!) ‘
=> the vol initially unif Vil oy = Vo Vi
> the volumes ardnitially uniform t=to

A the density field is assigned as an initial condition 1
(and generally it is not constant all over the fluid domain)

=>the particles may have different masses m; = pj ‘::m Vo

while the density field evolves according to the
physical equations
=>volumes may evolve in a way that disregards m;

the actual geometrical distribution of particles Vi(t) = 0i(1)

A During the simulation, the masses do not change 1

=> Reduced accuracy when intense density gradients occur!




he standard-SPH

| Velocity Module
2| Standard SPH 0:=0.01 Ul(gH)”

0.5
0.45
15 0.4
I 0.35
i 0.3
1 H 0.25
i 0.2

- 0.15
0.1
0.05

Volume variations /\

.| Standard SPH 0:=0.01




I he standard-SPEthe Pressurgsradient

The modelling of th@ressure gradients probably the most delicate point of SPH scheme

Without any loss of generality, we drop the viscous term, the body force

We consider a fluid domai without solid
boundaries nor interfaces with different fluids

The boundary oD is a free surface, i.e.
the stress is null along it =p=0 along 9D

pi— = —(Vp)i

pi = Fpi)

(dp ( dp;
- _ _,v. A VA TAY
du du;
4 — = -V 3 ;
pdr P dr
dx dx.
—_— = = F ! = i
S "




i he standard-SPEthe Pressure<Gradient

We define the pressure gradient in the most general way

™\
(Vp)i = WEWM Vi
J

and we use the integral properties of the momentum equation
(i.e., conservation of linear and angular momenta, conservation of energy)
to find out the correct expression for the argumei

2 S adlb NI TN (i
XFYR RSNAOGS (K



he standard-SPEthe Pressure<Gradient

Conservation of linear momentum
Let us integrate the momentum equation oMex

d ™
f v = - prdV = - f pnds
dt D "'-'l"lllrjI

Y Zero stress along
the Free Surface (FS)

ZV(V;})I_ S‘P VW, V=0

mmmmm) P, ; has to besymmetric thatis P;; = P;;



I he standard-SPEthe Pressurgsradient

Conservation of angular momentum

Let us consider the angular momentum with respect to the poinand, then,

Integrate the equation oveibX Using integration by parts and

the boundary condition along the F:

d
f(x—xg)x,o—”dt/= —f(x—xg)prdV
D dz | Jp

/

D Vi i = x0) X (V) = ) Vi (= x0)x ) P ViW;Vj = 0
i i J

This condition is automatically fulfilled

Indeed we needDi,j to be symmetric(ok!)

andthe kernel gradient to be radiathatis ViWi; || (-rj—-l‘f) (ok!)




he standard-SPEthe Pressure<Gradient

Conservation of energy

We multiply the momentum fou scalarlyand integrate oveD

Internal energy

d [||ul]? | ("
p—|—|dV == | u-Vpdv =" 0 | pV-udv
p dr\ 2 D Jap Jp
N . — ()
<
I IR T _ . Different expressions o(V - #);
Z PikV-u)i Vi = Zu‘ Vp)i Vi lead to different expressions c(V p);
: : (Colagrossi et al. 2009)

Substituting the formula for{V - «#);  and rearranging, we 11 Pij = (pi+pj)




i he standard-SPEthe Pressure<Gradient

{dzYYI NAT Ay3axo

A preserves linear and angular momenta
Vp)i = ) (pi+p))ViWi;V;
J A the work along the free surface is null

in an integral sensgnamely

f pu-n)dsS =0
oD

Advantages:

A if we setp=0along the FS at the initial time, the SPH does a null work along the FS
(in an integral sense) during the subsequent evolution

A in comparison to the incompressible SPH variants, there is no need to impose
p=0along the FS during the evolution



I he standard-SPEthe Pressurgsradient

FAYILE NBYIFN]aAaxXo

(Vp)i = D (pj+pi) VWi, Vj =
J

standard formula for the gradient
(e.g. divergence of the velocity)

VI'; points towards the «voids» in the fluid domain

A if p.>Q theterm p; VI;  tends to reduce the disorder in the particle distribution
=)  «implicit particle packing»

A if p. <Qtheterm p;VI;  tends to increase the disorder in the particle distribution

=) tensile instability



Inside the momentum equation, the contribution from this term

I he standard-SPEthe Pressurgsradient

Vi

- = ey

—
- ~~~
—

regularizing

increasing disorder

=2 piVI;

— oy,



he standard-SPEthe Pressure<Gradient

Onset of tensile instability Negative pressure regions

A\

With tensile instability contro




