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The Smoothed Particle Hydrodynamics (SPH) 

ÅGeneral features of the SPH 
 
ÅSmoothed and discrete operators 

 
ÅStandard SPH scheme 

 
ÅWeakly-compressibility assumption 
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General features of the SPH 

The origin of the method 

1977         Gingold & Monaghan / Lucy :  born of SPH 
                  application field:  astrophysics 
 
улΩǎ           mainly applied in astrophysics   
                    όǎǘŀǊ ŦƻǊƳŀǘƛƻƴΣ ǎŜƭŦ ƎǊŀǾƛǘŀǘƛƴƎ ŎƭƻǳŘǎΣΧύ 
                  then modelling of structures 
 
флΩǎ           astrophysics, structures ; 
                  1994:   free-surface SPH (Monaghan) 
 
нлллΩǎ       astrophysics, structures, fluid dynamicsΧΦ  
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The SPH is a particle method 

The fluid domain (D hereinafter)  
is discretized into a finite number  
of particles that represent  
elementary volumes of fluid 

D 

Particles transport the values of the physical 
quantities (e.g. pressure and velocity),  
moving with the fluid velocity 
=> the SPH is a Lagrangian method 

ui 

No topological connections  
=> the SPH is a Meshless method 

General features of the SPH 



Meshless: 
 
Åto solve problems where mesh-based solvers meet difficulties  
     (e.g. very large deformations of the fluid domain) 
Åto avoid costly mesh generating/handling 

Lagrangian: 
 
Åto naturally and accurately follow interfaces evolution 
     (complex free surfaces, multi-fluid/phase interfaces) 
Åto solve fast dynamics flows (no convection term) 

General features of the SPH 



Smoothing 

Why smoothing? 
 
Å the Lagrangian nature of the SPH induces non-uniform spatial distributions 

of particles during the flow evolution   
 

Å the absence of topological connections between particles (meshless method) 
makes the evaluation of standard  differential operators very complex 

The smoothing procedure allows us to model the interactions between 
neighbour particles in a simple and consistent way and to approximate the 
usual differential operators in a reliable manner 



Let us consider a weight function W  
(kernel function) defined as follows: 
 
Å radial and positive 
 
Åwith a compact support Ҡ 
     (i.e. it is null outside Ҡ)  
 
Å C1(Rn) at least 
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The kernel function has generally a bump-like shape: 
 
Å Gaussian-type  

 
Å Polinomial type (e.g. Wendland kernels) 

 
Å Spline kernels (e.g. Cubic/quintic splines) 
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The kernel function is generally expressed  

as a function of a reference length h,  

called  smoothing length,  

which is proportional to the radius R  

of the kernel domain Ҡ  



Smoothing - CONTINUUM 

The kernel function is normalized to one, that is: 
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Consequently, the kernel function W  preserves  
its «mass»  inside the support  Ҡ  for every choice of  h 
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For h going to zero, the Kernel function shrinks to a point  (preserving its mass) 
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The kernel function is normalized to one, that is: 
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Consequently, the kernel function W  preserves  
its «mass»  inside the support  Ҡ  for every choice of  h 

h = 1/3 

h = 1/2 

h = 2/3 

h = 1 

Gaussian kernel in 2D with R=3h 

For h going to zero, the Kernel function shrinks to a point  (preserving its mass) 

W converges weakly to a Dirac function!  



Smoothing - CONTINUUM 

The smoothing procedure is defined through a convolution integral with the 
kernel function W over the fluid domain D 
 
In particular, for a generic scalar function f, we define: 

Ҡ 

x 
x* 

w Ғ Ƙ 

the support  Ҡ  is centred at the point  x and  
the integration is done on the variable x*  

×    
 
×    

As a consequence of the properties of W, we have: 

denotes  
differentiation with respect to x*  

where  



Smoothing - CONTINUUM 

The simplest case is obtained for f=1  

¢Ƙƛǎ ŦǳƴŎǘƛƻƴ ǘŀƪŜǎ ƛƴǘƻ ŀŎŎƻǳƴǘ Ƙƻǿ ƳǳŎƘ άƳŀǎǎέ ƻŦ ǘƘŜ ŦƭǳƛŘ ŘƻƳŀƛƴ D  
is inside the kernel domain Ҡ 
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Smoothing - CONTINUUM 

The simplest case is obtained for f=1  

Since the kernel is normalized, we have:  

All the «mass» is inside the fluid domain 

Ҡ 
x 

D 
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Smoothing - CONTINUUM 

The simplest case is obtained for f=1  
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Some «mass» is outside the fluid domain 

Since the kernel is normalized, we have:  

x* 
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Smoothing - CONTINUUM 

Now, let us consider again the convolution of the kernel function W 
with a generic scalar function f 



Smoothing - CONTINUUM 

Expanding  f(x*)  in the neighbourhood of  x  and using the radial symmetry  
of the kernel function, we find 

This is because the kernel function 
converges weakly to a Dirac function! 

Now, let us consider again the convolution of the kernel function W 
with a generic scalar function f 



Smoothing - CONTINUUM 

Expanding  f(x*)  in the neighbourhood of  x  and using the radial symmetry  
of the kernel function, we find 

The lack of mass inside Ҡ worsens 
the convergence of the smoothed function! 

< 1 

Now, let us consider again the convolution of the kernel function W 
with a generic scalar function f 



Smoothing - CONTINUUM 

Smoothing of a linear function 

influence of the boundary of the fluid domain D, where 



Smoothing - CONTINUUM 

Similarly, we define the smoothed gradient of the function  f 

denotes  
differentiation with respect to x*  

where  



Smoothing - CONTINUUM 

Similarly, we define the smoothed gradient of the function  f 

denotes  
differentiation with respect to x* 

where  

integrating by parts 



Smoothing - CONTINUUM 

Similarly, we define the smoothed gradient of the function  f 

denotes  
differentiation with respect to x* 

where  

from the radial symmetry of the kernel function 



Smoothing - CONTINUUM 

Similarly, we define the smoothed gradient of the function  f 

denotes  
differentiation with respect to x* 

where  

boundary integral to be estimated 



Smoothing - CONTINUUM 

Ҡ is inside the  
fluid domain 



Smoothing - CONTINUUM 

Some «mass» is outside 
the fluid domain 

ҜҠ 
x 

Ҝ5 



Smoothing - CONTINUUM 

Expanding  f(x*) in the neighbourhood of x, we find: 
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Expanding  f(x*) in the neighbourhood of x, we find: 



Smoothing - CONTINUUM 

Then, using the previous estimate for the boundary integral, we find: 



Smoothing - CONTINUUM 

Then, using the previous estimate for the boundary integral, we find: 



Smoothing - CONTINUUM 

Then, using the previous estimate for the boundary integral, we find: 

Collecting together all the contributions, we obtain the expression for the 
smoothed gradient 



Smoothing - CONTINUUM 

Summary 

Ҡ inside the fluid domain D Ҡ partially out of the fluid domain D 



Smoothed gradient  
of a linear function 

x-component 
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Smoothing - DISCRETE 

The fluid domain is discretized in a finite number of particles that represent  
elementary volumes of fluid and transport the main physical quantities 

Let us assume that the volumes Vi ŀǊŜ ƪƴƻǿƴΧ  
 
(these may be obtained through geometrical procedures basing  
on particle distribution or during the numerical simulation)  



Smoothing - DISCRETE 

The fluid domain is discretized in a finite number of particles that represent  
elementary volumes of fluid and transport the main physical quantities 

Let us assume that the volumes Vi ŀǊŜ ƪƴƻǿƴΧ  
 
(these may be obtained through geometrical procedures basing  
on particle distribution or during the numerical simulation)  

Then, we replace the integral over Ҡ by summations over the neighbour particles 



Smoothing - DISCRETE 

Similarly, we define: 

where  

represents  
differentiation with respect to xi 

where 

Hereinafter the symbol            in the summations is understood    



Smoothing - DISCRETE 

What about the convergence of discrete operator towards  
the continuous smoothed operators? 

increasing the number of particle in  Ҡ decreasing   ҟȄκƘ 

Å the convergence strongly depends on the way in which the particles  
                are distributed (regular distributions are needed) 
 
Åeven in the presence of regular particle distribution, the order of  
 convergence is generally between 1 and 2  

Lƴ ŀƴȅ ŎŀǎŜΧΦ 

ҟȄ  is the mean particle distance 



Smoothing - DISCRETE 

For the function,   if 

discrete smoothed (continuous) exact 

+ REGULAR PARTICLE  
DISTRIBUTIONS! 

(i.e. inside the fluid domain) 

For regular distributions, the convergence to the exact solution  
is attained if BOTH the parameters ҟȄκƘ  and h go to zero! 

(see, for example, Quinlan et al. 2006)  



Smoothing - DISCRETE 

ҟȄκƘ Ґ const 

ҟȄκƘ Ґ const/2 

ҟȄκƘ Ґ const/4 

h 

Theoretical second-order convergence for h 

For example, if we check the convergence  

of the SPH by decreasing  h   

while  ҟȄκƘ  is fixed 

(i.e. constant number of particles in ҠύΧ 



Smoothing - DISCRETE 

For                               (i.e. inside the fluid domain)  

                                         for  ҟȄκƘΣ Ƙ  ζ м   ΧΦand for regular distributions! 



w9D¦[!w  t!w¢L/[9  5L{¢wL.¦¢Lhb{  ŀƴŘ  5L{hw59wΧ 

What is a «regular» particle distribution? 

! ŎƻƴǎƛǎǘŜƴǘ ŀƴŘ ǳƴƛǉǳŜ ŘŜŦƛƴƛǘƛƻƴ ƛǎ ǇǊƻōŀōƭȅ ƛƳǇƻǎǎƛōƭŜΧ 
     Χōǳǘ ƛƴ ǘƘŜ {tI ŦǊŀƳŜǿƻǊƪ ǿŜ Ŏŀƴ ŘŜǊƛǾŜ ǎƻƳŜ ǳǎŜŦǳƭ ƛƴŘƛŎŀǘƻǊǎ 

±ŀǊƛŀōƭŜǎ           ŀƴŘ               ŀǊŜ ζƎŜƻƳŜǘǊƛŎŀƭη ǉǳŀƴǘƛǘƛŜǎΧΦ    

regular: 

irregular: 



w9D¦[!w  t!w¢L/[9  5L{¢wL.¦¢Lhb{  ŀƴŘ  5L{hw59wΧ 

           Ƙŀǎ ŀ ŦǳǊǘƘŜǊ ƛƳǇƻǊǘŀƴǘ ǇǊƻǇŜǊǘȅΧΦ 

«regular» «irregular» 

 Since         is  related to the particle concentration, the vector            

                                          points towards the «voids» inside the fluid domain   



w9D¦[!w  t!w¢L/[9  5L{¢wL.¦¢Lhb{  ŀƴŘ  5L{hw59wΧ 

This property has been used: 
 
 
Å  to build algorithms that initialize the SPH simulations with a regular  
 particle distribution,  disregarding the specific geometry  
 under consideration. 
 
 see, for example, the Particle Packing Algorithm (Colagrossi et al., 2012) 
 
 
Å to define SPH schemes that dynamically evolve towards uniform  
 and regular particle distributions. 
 
 see, for example, the Particle Shifting Technique (PST) 
                             (Nestor et al. 2009, Lind et al. 2012) 
 

Some care has to be used close to the boundaries  
(e.g. along  free surfaces or solid bodies) 



The standard SPH 

Despite many fluids (like water) are modelled as incompressible, the SPH  
in its basic form relies on the hypotheses that the fluid is weakly-compressible  
(this will be clarified later)  

It may be derived from the Navier-Stokes equations for compressible fluids:  

We are interested in the SPH in the fluid dynamics fieldΧΦ  

 ́is the fluid density,  

u is the fluid velocity 

p is the pressure field 

f is a body force 

State equation for barotropic fluids  
viscous component of the stress tensor 

Lagrangian derivatives 



The standard SPH 

Despite many fluids (like water) are modelled as incompressible, the SPH  
in its basic form relies on the hypotheses that the fluid is weakly-compressible  
(this will be clarified later)  

It may be derived from the Navier-Stokes equations for compressible fluids:  

We are interested in the SPH in the fluid dynamics fieldΧΦ  

the differential operators are substituted with their smoothed (and discrete) counterparts 



The standard SPH 

5ƛǾŜǊƎŜƴŎŜ ƻŦ ǘƘŜ ǾŜƭƻŎƛǘȅΧ 

we need to find out the volumes! 

Being a Lagrangian method, it is common practise in the standard SPH to associate  
a mass           to each particle and to maintain it constant during the flow evolution   

It is also possible to define the volumes basing on geometrical considerations 
(e.g. particle distributions, 9ǎǇŀƺƻƭ & Revenga, 2003)  

and 



The standard SPH 

DŜƴŜǊŀƭƭȅΧΦ 
 
Å  the SPH simulation is initialized by imposing  
       a uniform particle distribution 
      (or, at least, as regular as possible!) 
       =>  the volumes are initially  uniform 
 
 
Å the density field is assigned as an initial condition  
      (and generally it is not constant all over the fluid domain) 
      => the particles may have different masses 
 
 
Å During the simulation, the masses do not change 
      while the density field evolves according to the  
      physical equations 
      => volumes may evolve in a way that disregards 
      the actual geometrical distribution of particles 



The standard SPH 

DŜƴŜǊŀƭƭȅΧΦ 
 
Å  the SPH simulation is initialized by imposing  
       a uniform particle distribution 
      (or, at least, as regular as possible!) 
       =>  the volumes are initially  uniform 
 
 
Å the density field is assigned as an initial condition  
      (and generally it is not constant all over the fluid domain) 
      => the particles may have different masses 
 
 
Å During the simulation, the masses do not change 
      while the density field evolves according to the  
      physical equations 
      => volumes may evolve in a way that disregards 
      the actual geometrical distribution of particles 

=>   Reduced accuracy when intense density gradients occur! 



The standard SPH 



The standard SPH ς the Pressure Gradient 

The modelling of the pressure gradient is probably the most delicate point of SPH schemes  

Without any loss of generality, we drop the viscous term, the body force  

D 

We consider a fluid domain D  without  solid  
boundaries nor interfaces with different fluids 

The boundary of D is a free surface, i.e. 
the stress is null along it  =>  p=0  along  



The standard SPH ς the Pressure Gradient 

We define the pressure gradient in the most general way  

and we use the integral properties of the momentum equation 
(i.e., conservation of linear and angular momenta, conservation of energy)  

to find out the correct expression for the argument Pi,j 

²Ŝ ǎǘŀǊǘ ŦǊƻƳ ǘƘŜ Ŝǉǳŀǘƛƻƴǎ ŀǘ ǘƘŜ ŎƻƴǘƛƴǳǳƳΧ 
     ΧŀƴŘ ŘŜǊƛǾŜ ǘƘŜ ǊŜƭŀǘƛƻƴǎ ǘƘŀǘ ǘƘŜ ǇǊŜǎǎǳǊŜ ƎǊŀŘƛŜƴǘ Ƙŀǎ ǘƻ ǎŀǘƛǎŦȅ  



The standard SPH ς the Pressure Gradient 

Let us integrate the momentum equation over DΧ 

Conservation of linear momentum 

       has to be symmetric, that is 
 

Zero stress along  
the Free Surface (FS) 



The standard SPH ς the Pressure Gradient 

Conservation of angular momentum 

Let us consider the angular momentum with respect to the point  x0 and, then, 

Integrate the equation over DΧ Using integration by parts and  
the boundary condition along the FS 

This condition is automatically  fulfilled!     

Indeed we need Pi,j to be symmetric  (ok!)  

and the kernel gradient to be radial, that is (ok!) 



The standard SPH ς the Pressure Gradient 

Conservation of energy 

We multiply the momentum for u scalarly and integrate over D  

Work along the FS Internal energy 

Substituting the formula for                   and rearranging, we find 

Different expressions of                   
lead to different expressions of 
(Colagrossi et al. 2009) 



The standard SPH ς the Pressure Gradient 

{ǳƳƳŀǊƛȊƛƴƎΧΦ 

Å preserves linear and angular momenta 
 

Å the work along the free surface is null 
     in an integral sense, namely 

Advantages: 
 
Å if we set p=0 along the FS at the initial time, the SPH does a null work along the FS 
     (in an integral sense) during the subsequent evolution  
 
Å in comparison to the incompressible SPH variants, there is no need to impose  
     p=0 along the FS during the evolution 



The standard SPH ς the Pressure Gradient 

Ŧƛƴŀƭ ǊŜƳŀǊƪǎΧΦ 

standard formula for the gradient 
(e.g. divergence of the velocity) 

     

points towards the «voids» in the fluid domain 

Å if  pi  > 0,  the term                  tends to reduce the disorder in the particle distribution 

Å if  pi  < 0, the term                  tends to increase the disorder in the particle distribution 

«implicit particle packing» 

tensile instability 



The standard SPH ς the Pressure Gradient 

Inside the momentum equation, the contribution from this term is 

regularizing  increasing  disorder 



The standard SPH ς the Pressure Gradient 

Onset of tensile instability Negative pressure regions 

With tensile instability control 


